วันพฤหัสบดีที่ 22 ตุลาคม พ.ศ. 2563

3.4 พันธะโลหะ

     ลหะเป็นธาตุที่มีอิเล็กตรอนระดับนอกจำนวนน้อย และมีพลังงานการแตกตัวเป็นไอออนต่ำ มีจุดหลอมเหลวสูง นำไฟฟ้าและความร้อนได้ดี สามารถทุบให้เป็นแผ่นบางหรือดึงให้เป็นเส้นได้ โลหะมีเงาและทึบแสง สมบัติเหล่านี้แสดงว่าอะตอมโลหะไม่ได้ยึดเหนี่ยวกันด้วยพันธะไอออนิก หรือพันธะโคเวเลนต์ หรือแรงแวนเดอร์วาล เหตุผลเพราะว่าสารที่มีพันธะโคเวเลนต์ ไม่นำไฟฟ้า เนื่องจากไม่มีอิเล็กตรอนที่สามารถเคลื่อนที่ไปได้ และจะทำให้เป็นแผ่นหรือดึงให้เป็นเส้นก็ไม่ได้ เพราะพันธะโคเวเลนต์มีทิศทางเฉพาะย่อมขัดขืนต่อการเปลี่ยนรูป พันธะไอออนิกก็เช่นกัน แม้เป็นพันธะที่ไม่มีทิศทาง ถ้าใช้แรงทุบตีให้เป็นแผ่นก็จะแตกหักออกจากกัน ส่วนแรงแวนเดอร์วาลเป็นแรงที่อ่อนมากแต่โลหะเป็นวัสดุที่แข็งแรงย่อมมีแรงระหว่างอนุภาคสูงมากกว่าแรงแวนเดอร์วาล

     จากสมบัติของโลหะดังกล่าวแสดงว่าโลหะมีพันธะที่เป็นแรงดึงดูดระหว่างไอออนบวกที่อยู่เรียงชิดติดกันกับอิเล็กตรอนที่อยู่โดยรอบ คล้ายทะเลอิเล็กตรอนที่เคลื่อนไหลอยู่รอบ ๆ ไอออนบวกจึงเป็นเหตุทำให้โลหะนำไฟฟ้าได้ดี ตีให้เป็นแผ่นหรือดึงให้เป็นเส้นได้ โดยไม่แตกหักดังภาพ

136
แรงยึดเหนี่ยวระหว่างโมเลกุล (Intermolecular Forces)

       แรงยึดเหนี่ยวภายในโมเลกุล นอกจากอยู่ในรูปของพันธะไอออนิกและพันธะโคเวเลนต์แล้วยังมีแรงยึดเหนี่ยวที่สำคัญระหว่างอะตอมและระหว่างโมเลกุล คือ แรงแวนเดอร์วาล (van der waal forces) และพันธะไฮโดรเจน (hydrogen bond) แรงดึงดูดทั้งสองนี้เป็นแรงที่อ่อนกว่าแรงจากพันธะไอออนิกและโคเวเลนต์  แรงดึงดูดระหว่างโมเลกุลนี้มีความสำคัญและสามารถใช้อธิบายสมบัติทางเคมีของสารและสมบัติทางกายภาพ เช่น จุดเดือด จุดหลอมเหลว  แรงแวนเดอร์วาลจะเพิ่มมากขึ้นเมื่อจำนวนอิเล็กตรอนและมวลโมเลกุลเพิ่ม แรงยึดเหนี่ยวระหว่างโมเลกุลมีหลายประเภทดังนี้
 แรงแวนเดอร์วาล (van der waal forces)
      เป็นแรงดึงดูดระหว่างโมเลกุลไม่มีขั้วซึ่งเป็นผลมาจากการมีสภาพขั้วขณะหนึ่ง  ซึ่งภายในอะตอมหรือโมเลกุลมีกลุ่มอิเล็กตรอนเคลื่อนที่ตลอดเวลา ความหนาแน่นของอิเล็กตรอนรอบ ๆ นิวเคลียสเปลี่ยนแปลงได้ทำให้ชั่วขณะหนึ่ง มีความหนาแน่นของอิเล็กตรอนไม่สม่ำเสมอ  เป็นผลทำให้เกิดลักษณะขั้วบวกลบ (สองขั้ว) ขึ้นมาชั่วขณะ นั่นคือ ศูนย์กลางของประจุบวกเคลื่อนที่ไปอยู่คนละที่กับศูนย์กลางของประจุลบ  โมเลกุลเหล่านี้จะเหนี่ยวนำโมเลกุลที่อยู่ข้างเคียงให้กลายเป็นโมเลกุลที่มีขั้วขึ้นมาด้วย และมีแรงดึงดูดกันแม้เป็นช่วงระยะเวลาสั้น ๆ แต่เกิดบ่อยครั้ง แรงดึงดูดจึงมีอยู่ตลอดไป นอกจากนี้ขนาดและรูปร่างโมเลกุลก็มีส่วนสำคัญ โมเลกุลขนาดใหญ่และมีรูปร่างยาวจะอยู่ในสภาพมีขั้วง่ายกว่าโมเลกุลที่มีขนาดเล็กและมีรูปร่างเป็นก้อนกลม
แรงดึงดูดระหว่างขั้ว (dipole-dipole interaction)
    แรงนี้เกิดจากโมเลกุลที่มีขั้ว เช่น CO, NO, SO2 เมื่อโมเลกุลเหล่านี้เข้ามาใกล้กัน ขั้วบวก (137)  ของโมเลกุลจะหันเข้าหาด้านขั้วลบ (138)   ของอีกโมเลกุลหนึ่ง ทำให้เกิดแรงดึงดูดขึ้น ซึ่งเป็นแรงดึงดูดที่อ่อน มีความแรงประมาณ 1% ของพันธะไอออนิกหรือพันธะโคเวเลนต์เท่านั้น แรงดึงดูดประเภทนี้ทำให้โมเลกุลที่มีสภาพขั้ว มีจุดเดือดจุดหลอมเหลวสูงกว่าโมเลกุลที่ไม่มีสภาพขั้ว  เมื่อมีมวลโมเลกุลใกล้เคียงกัน
 พันธะไฮโดรเจน  (Hydrogen bond)
      พันธะไฮโดรเจน เป็นพันธะที่เกิดกับโมเลกุลที่ประกอบด้วยธาตุไฮโดรเจน (H) สร้างพันธะโคเวเลนต์กับอะตอมที่มีสภาพไฟฟ้าลบสูง ซึ่งสามารถดึงดูดอิเล็กตรอนคู่ในพันธะได้ดี ความหนาแน่นอิเล็กตรอนจะไปเข้มข้นอยู่ทางด้านของอะตอมที่มีสภาพไฟฟ้าลบสูง ทำให้อะตอมไฮโดรเจนมีสภาพไฟฟ้าเป็นบวกมาก จนเกือบกลายเป็นไฮโดรเจนไอออน อะตอมไฮโดรเจนจึงสามารถดึงดูดอะตอมที่มีสภาพไฟฟ้าลบสูงของโมเลกุลข้างเคียง เกิดเป็นพันธะขึ้น ซึ่งพันธะนี้ทำหน้าที่คล้ายสะพานเชื่อมระหว่างสองอะตอมของสองโมเลกุลนั้น พันธะไฮโดรเจนจัดเป็นแรงระหว่างโมเลกุลที่เป็นแรงดึงดูดทางไฟฟ้าอย่างอ่อนกว่าพันธะไอออนิกและพันธะโคเวเลนต์แต่แรงกว่าแรงแวนเดอร์วาล และเป็นพันธะที่ยาวกว่าพันธะโคเวเลนต์ เราใช้ขีด —- และ …. แทนพันธะไฮโดรเจน ตัวอย่าง
    สารประกอบที่มีพันธะไฮโดรเจนได้แก่ HCl, H2O, HF  ฟลูออรีนเป็นธาตุที่มีสภาพไฟฟ้าลบสูงที่สุด  ดังนั้นพันธะ  H – F ในไฮโดรเจนฟลูออไรด์จึงเป็นพันธะที่อยู่ในสภาพมีขั้วมาก จึงเกิดแรงดึงดูดระหว่างฟลูออรีนกับไฮโดรเจนของอีกโมเลกุลหนึ่ง เกิดเป็นพันธะไฮโดรเจน ดังนี้
139      โมเลกุลของน้ำ  (H2O)    เกิดพันธะไฮโดรเจนได้เป็นอย่างดี เนื่องจากออกซิเจนมีอิเล็กตรอนคู่โดดเดี่ยว 2 คู่ เช่น140  และออกซิเจนเป็นธาตุที่มีความสามารถในการดึงอิเล็กตรอนในพันธะได้ดี จึงมีความหนาแน่นของอิเล็กตรอนรอบ ๆ อะตอมออกซิเจนสูง ในขณะที่ความหนาแน่นของอิเล็กตรอนรอบอะตอมไฮโดรเจนมีเบาบางจึงเกิดพันธะไฮโดรเจนระหว่างโมเลกุลของน้ำได้ดี
ตัวอย่างของการเกิดพันธะไฮโดรเจน
141
          พันธะไฮโดรเจนมีอิทธิพลต่อสมบัติของสาร เช่น ทำให้สารมีจุดหลอมเหลวและจุดเดือดสูงกว่าที่ควรจะเป็น เช่น  H2S  มีมวลโมเลกุล  34  มีสถานะเป็นแก๊สที่อุณหภูมิห้อง มีจุดเดือด – 60 องศาเซลเซียส ในขณะที่ H2O   ซึ่งมีมวล 18  แต่มีสถานะเป็นของเหลวที่อุณหภูมิห้อง มีจุดเดือด 100 องศาเซลเซียส ทั้งนี้เนื่องจากอิทธิพลของพันธะไฮโดรเจนในโมเลกุลของน้ำ นอกจากนี้  พันธะไฮโดรเจนยังมีบทบาทมากในลักษณะโครงสร้างของโปรตีน DNA  และ RNA ซึ่งเป็นโมเลกุลของสิ่งมีชีวิต
เลขออกซิเดชัน  (Oxidation number)
  เลขออกซิเดชัน หมายถึง ตัวเลขที่แสดงจำนวนอิเล็กตรอนในระดับนอกของธาตุที่ใช้ในการสร้างพันธะเคมี เวลาเขียนจะแสดงเครื่องหมายบวกหรือลบกำกับไว้  สำหรับสารประกอบไอออนิก เลขออกซิเดชันของธาตุที่ให้อิเล็กตรอนจะมีเครื่องหมายเป็นบวก และมีค่าเท่ากับจำนวนอิเล็กตรอนที่ให้ไป ส่วนธาตุที่รับอิเล็กตรอนเลขออกซิเดชันจะมีเครื่องหมายเป็นลบ และมีค่าเท่ากับจำนวนอิเล็กตรอนที่รับมา ตัวอย่างเช่น
NaCl   จะได้ว่า         Na   มีเลขออกซิเดชันเป็น   +1
Cl    มีเลขออกซิเดชันเป็น    -1
CaCl2   จะได้ว่า        Ca   มีเลขออกซิเดชันเป็น   +2
Cl    มีเลขออกซิเดชันเป็น    -1
          สำหรับสารประกอบโคเวเลนต์ที่พันธะประกอบด้วยธาตุที่มีค่าอิเล็กโทรเนกาติวิตี้สูงกับธาตุที่มีค่าอิเล็กโทรเนกาติวิตี้ต่ำ ธาตุที่มีค่าอิเล็กโทรเนกาติวิตี้สูงสามารถดึงอิเล็กตรอนคู่ที่ใช้ร่วมกันในพันธะได้ดีกว่า จะมีเลขออกซิเดชันเป็นลบ และมีค่าเท่ากับจำนวนอิเล็กตรอนที่ดึงเข้ามา ส่วนธาตุที่มีค่าอิเล็กโทรเนกาติวิตี้ต่ำกว่า จะมีเลขออกซิเดชันเป็นบวก และมีค่าเท่ากับจำนวนอิเล็กตรอนที่ถูกดึงไป
ตัวอย่างที่ 1   H2O
O มีเลขออกซิเดชัน   =    –  2
H มีเลขออกซิเดชัน   =    + 1
          สำหรับธาตุหรือสารประกอบโคเวเลนต์ที่ประกอบด้วยธาตุที่มีค่าอิเล็กโทรเนกาติวิตี้เท่ากันจะมีเลขออกซิเดชันเป็นศูนย์ เช่น O2,  F2,  O3,  S8,  Cu,  Fe
ข้อควรจำ ผลบวกของเลขออกซิเดชันของอะตอมทั้งหมดในสารหนึ่งโมเลกุลมีค่าเป็นศูนย์ และผลบวกของเลขออกซิเดชันของอะตอมทั้งหมดในไอออนที่มีหลายอะตอมมีค่าเท่ากับประจุของไอออนนั้น (การคิดเลขออกซิเดชันจะคิดต่อ 1 อะตอมของแต่ละธาตุ)

ตัวอย่างที่ 2    CH3Cl
C    มีเลขออกซิเดชัน   = – 2
Cl   มีเลขออกซิเดชัน   = – 1
H    มีเลขออกซิเดชัน   = + 1  (มี 3 อะตอม จะมีค่า  = +3)
ผลรวมของเลขออกซิเดชันของ  CH3Cl  =   0
ตัวอย่างที่ 3     MnO4
         เนื่องจากในการสร้างพันธะเคมีของ O จะใช้ 2 อิเล็กตรอน ดังนั้น O 1 อะตอมมีเลขออกซิเดชัน  – 2 ดังนั้นในไอออน  MnO4   จะได้ว่า  O ทั้งหมด 4 อะตอมมีเลขออกซิเดชันรวม  =   – 8
Mn   จะมีเลขออกซิเดชัน คือ    =    + 7
         การหาเลขออกซิเดชันของธาตุในสารประกอบพิจารณาง่าย ๆ ดังตัวอย่าง
H2SO4          H 1 อะตอมมีเลขออกซิเดชัน   =  +1
H 2 อะตอมมีเลขออกซิเดชัน   =  +2
O 1 อะตอมมีเลขออกซิเดชัน   =  -2
O 4 อะตอมมีเลขออกซิเดชัน   =  -8
         ดังนั้น  S  1 อะตอมจะมีเลขออกซิเดชัน  =  8 – 2  =  6   แต่ผลรวมของเลขออกซิเดชันของธาตุทุกอะตอมใน 1 โมเลกุลของสารมีค่า 0 ดังนั้น  S   มีเลขออกซิเดชัน   =    + 6
สารประกอบ และสมบัติของสารประกอบ
  1.   การเกิดสารประกอบ
         สารประกอบ คือ สารที่เกิดจากการรวมตัวของธาตุตั้งแต่สองธาตุขึ้นไป โดยเกิดการเคลื่อนย้ายอิเล็กตรอน เพื่อให้เป็นไปตามกฎออกเตต (ให้อิเล็กตรอนวงนอกสุดครบแปด) นั่นคือ สารประกอบเกิดจากพันธะเคมีซึ่งอาจเกิดจากพันธะไอออนิก หรือ พันธะโคเวเลนต์ก็ได้
         สมบัติของสารประกอบไอออนิก
    1. มีขั้ว สารประกอบไอออนิกไม่เกิดเป็นโมเลกุลเดี่ยว แต่เป็นของแข็งประกอบด้วยไอออนจำนวนมากยึดเหนี่ยวกันด้วยแรงยึดเหนี่ยวทางไฟฟ้า
    2. นำไฟฟ้าได้ เมื่อใส่สารประกอบไอออนิกลงในน้ำ ไอออนจะแยกออกจากกัน ทำให้สารละลายนำไฟฟ้าได้ และสารประกอบไอออนิกที่หลอมเหลวก็นำไฟฟ้าได้ เพราะเมื่อหลอมเหลวไอออนจะแยกกันเป็นอิสระ
    3. มีจุดเดือดและจุดหลอมเหลวสูง เพราะสารประกอบไอออนิกต้องใช้พลังงานมากในการทำลายแรงยึดเหนี่ยวระหว่างไอออน เพื่อจะให้กลายเป็นของเหลว หรือกลายเป็นไอ
    4. การละลาย สารประกอบไอออนิกละลายได้ในน้ำหรือละลายในตัวทำละลายที่มีสภาพขั้วสูงมาก
    5.   การเกิดปฏิกิริยาไอออนิก เป็นปฏิกิริยาระหว่างไอออน เพราะสารประกอบไอออนิกเมื่อเป็นสารละลาย ไอออนเป็นอิสระ จึงเกิดปฏิกิริยาทันที
    6. สารประกอบไอออนิกเกิดจากไอออนประจุตรงกันข้าม รอบ ๆ ไอออน จะมีสนามไฟฟ้าจึงไม่แสดงทิศทางพันธะไอออนิก
สมบัติของสารประกอบโคเวเลนต์
    1. แรงดึงดูดภายในโมเลกุลมีน้อยทำให้มีสถานะเป็นแก๊ส ของเหลว และเป็นของแข็งที่อ่อนนุ่มที่อุณหภูมิปกติ
    2. ไม่ละลายน้ำ
    3. มีจุดเดือดและจุดหลอมเหลวต่ำ เพราะใช้พลังงานน้อยในการทำลายแรงยึดเหนี่ยวภายในโมเลกุล
    4. ไม่นำไฟฟ้า
    5. ละลายในเบนซีน และสารอินทรีย์หรือตัวทำละลายที่ไม่มีขั้ว
        เนื่องจากสารประกอบมีอยู่มากมาย จึงจำเป็นต้องมีกฎเกณฑ์ในการเขียนสูตร และการเรียกชื่อสารประกอบ เพื่อให้สะดวกแก่การจดจำ และง่ายต่อการเรียนการสอน ทั้งจะได้มีแบบแผนหลักเกณฑ์ที่เหมือนกัน จึงมีหลักดังนี้
การเขียนสูตรสารประกอบ
          สารประกอบเกิดจากการรวมตัวของธาตุ หรือหมู่ธาตุ ตั้งแต่ 2 ธาตุขึ้นไป ซึ่งอาจจะอยู่ในลักษณะของไอออน หรืออะตอมก็ได้ ในการเขียนสูตรจึงมีกฎเกณฑ์ดังนี้
  1. โลหะ กับอโลหะ ให้เขียนสัญลักษณ์โลหะก่อน แล้วเขียนอโลหะตามหลัง เช่น
K          +         Cl     142      KCl
Ba        +          O     142      Ba
  1. ถ้าเป็นไอออน กับไอออน ต้องเขียนไอออนบวกก่อน แล้วตามด้วยไอออนลบ เช่น
NH+    กับ  SO   เขียนได้เป็น     ( NH4)2SO4
การเรียกชื่อสารประกอบ
        การเรียกชื่อสารประกอบใช้หลักการตามระบบ IUPAC (International Union of Pure and Applied Chemistry) ซึ่งมีข้อตกลงดังนี้
  1. สารประกอบระหว่างโลหะกับอโลหะ ให้เรียกชื่อโลหะธาตุแรก หรือไอออนบวก เต็ม ๆ แล้วตามด้วยอโลหะ หรือไอออนลบ  แล้วเปลี่ยนท้ายเสียงเป็นไอด์ (ide) เช่น
Na (Sodium) กับ Cl (Chlorine)     เขียนสูตร     NaCl     อ่านเป็น        Sodium chloride
Ba (Barium) กับ S (Sulfur)           เขียนสูตร     BaS     อ่านเป็น          Barium sulfide
K (Potassium) กับ I (Iodine)         เขียนสูตร     KI        อ่านเป็น        Potassium iodide
บางธาตุมีการตัด / เติม พยางค์ท้ายก่อนเปลี่ยนท้ายเสียงเป็นไอด์ เช่น
H (Hydrogen)                     เป็น        Hydride
N (Nitrogen)                       เป็น        Nitride
O (Oxygen)                          เป็น        Oxide
P (Phosphorus)                  เป็น        Phosphide
2. สารประกอบระหว่างอโลหะ กับอโลหะ สารประกอบชนิดนี้แม้จะมีองค์ประกอบเหมือนกัน แต่บางทีมีสารได้มากกว่า 1 สาร เช่น SO2 กับ SO หรือ  CO กับ CO การเรียกชื่อต้องบอกจำนวนอะตอมของแต่ละธาตุ เป็นภาษากรีก คือ  1 (mono),  2 (di), 3 (tri), 4 (treta),  5 (penta),  6 (hexa), 7 (hepta), 8 (octa), 9 (nona),10 (deca) ยกเว้นธาตุแรกมี 1 อะตอมไม่ต้องบอก เช่น
SO2         อ่านว่า  Sulfur dioxide
SO3         อ่านว่า  Sulfur trioxide
CO          อ่านว่า  Cabon monoxide
CO2        อ่านว่า  Cabon dioxide
PO5     อ่านว่า  Diphosphorus pentaoxide
  1. สารประกอบที่มีไอออนบวก กับไอออนลบที่ไม่ใช่อะตอมเดี่ยว แต่เป็นไอออนที่ประกอบด้วยหมู่อะตอม เช่น Sulphateion SO42- มี S เป็นอะตอมกลาง ตามข้อตกลงให้ถือว่าไอออนที่มีลักษณะเช่นนี้ เป็นไอออนเชิงซ้อน เรียกชื่อแบบเดียวกับสารเชิงซ้อน แต่อนุโลมให้ใช้ชื่อสามัญ ถ้ามีธาตุอื่นมารวมตัวกับไอออนนี้ ก็เรียกธาตุนั้นนำหน้า เช่น
ไอออน
ชื่อตามระบบ IUPAC
ชื่อสามัญ
SO42-Tetraoxosulphate ionSulphate ion
NO3Trioxide nitrate(V) ionNitrate ion
Na2SO4Sodium tetraoxidesulphateSodium sulphate
NaNO3Sodium trioxonitrateSodium nitrate
  1. สารประกอบที่ไอออนบวกมีค่าเลขออกซิเดชันหลายค่า การเรียกชื่อสารประกอบต้องระบุเลขออกซิเดชันด้วย โดยเขียนเลขโรมันไว้หลังชื่อธาตุนั้น เช่น
FeCl2                     อ่านได้ว่า               Iron (II) chloride
MnO2                     อ่านได้ว่า               Manganese (IV) oxide
สารประกอบเชิงซ้อน
         สารประกอบที่ประกอบด้วยไอออนเชิงซ้อน มักจะมีโลหะสองชนิด ซึ่งในสารประกอบนั้นจะมีไอออน 2 ชนิดคือ ไอออนบวก (+) และไอออนลบ (-) และไอออนที่ประกอบด้วยธาตุตั้งแต่ 2 ธาตุขึ้นไปนี้เรียกว่า ไอออนเชิงซ้อนอาจเป็นไอออนบวกหรือไอออนลบก็ได้ พวกไอออนเชิงซ้อนจะมีธาตุแทรนซิชันเป็นอะตอมกลาง และมีไอออน อะตอม หรือโมเลกุลอื่น มาล้อมรอบ โดยเรียกสิ่งที่ล้อมรอบว่า ลิแกนด์ ส่วนมากแล้วลิแกนด์จะยึดเหนี่ยวกับธาตุแทรนซิชันด้วยพันธะโคเวเลนต์ หรือโคออร์ดิเนตโคเวเลนต์  หลักการอ่านชื่อสารประกอบเชิงซ้อนมีดังนี้
  1. ถ้าไอออนเชิงซ้อนเป็นไอออนบวก ให้อ่านลิแกนด์นำหน้า แล้วตามด้วยเลขอะตอมกลาง โดยบอกเลขออกซิเดชันด้วย จากนั้นอ่านไอออนลบ
  2. ถ้าไอออนเชิงซ้อนเป็นลบ อ่านลิแกนด์นำหน้า จากนั้น อ่านอะตอมกลางลงท้ายด้วย – ate โดยบ่งบอกเลขออกซิเดชันของธาตุด้วย
ลิแกนด์บางตัวที่ควรทราบ
Cl–                           อ่านว่า                    Chloro
Br                          อ่านว่า                    Bromo
I                             อ่านว่า                    Iodo
CO32-                            อ่านว่า                    Carbonate
H2O                        อ่านว่า                    Aqua
CN                         อ่านว่า                    Cyano
NO2                       อ่านว่า                    Nitro
NH3                        อ่านว่า                    Ammine
ตัวอย่างการอ่านชื่อสารประกอบเชิงซ้อน
Na[FeF6]        อ่านว่า                    Sodiumhexafluoroferrate (III)
[ K3Fe(CN)6 ]   อ่านว่า                    Potassiumhexacyanoferrate (III)
[ ( Cu(H2O)4) SO4 ]      อ่านว่า            Tetraaquacopper (II) sulphate
[ ( Zn(NH3)4 ]2+       อ่านว่า           Tetraamminezinc (II ) ion
[ ( Ni(CN)4 ]2 –          อ่านว่า         Tetracyanonickelate (II) ion

ไม่มีความคิดเห็น:

แสดงความคิดเห็น

ข้อสอบพร้อมเฉลย บทที่3 พันธะเคมี

  1.   จำนวนพันธะโคเวเลนต์ในโมเลกุล  CH4 , SiCl4 , NaCl , NH3  เป็นกี่พันธะมีค่าเรียงตามลำดับ    คือข้อใด     ก.  4 , 4 , 0 , 3      ข.  6 ,...